Abelian 3-cocycles from Quadratic Forms Quinn's Formula

Kylan Schatz

Department of Mathematics
North Carolina State University
17 October, 2022

What's the Big Idea?

For 2-groups and pointed braided fusion categories, to understand their simple objects it is enough to understand group theory.

- Simple objects, associator, and braiding are given by ($G, A,[(\omega, c)]$).
- Even more simply, given by pre-metric group (G, A, q).
- It's easy to go extract quadratic form q from $[(\omega, c)]$. How to algebraically construct (ω, c) from q ?

Definition (EGNO 2.1.1 [3])

A monoidal category is a category \mathcal{C} equipped with:

- bifunctor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ called the tensor product,
- associativity isomorphisms

$$
\alpha_{X, Y, Z}:(X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes(Y \otimes Z),
$$

- and unit $(\mathbb{1}, \iota), \iota: \mathbb{1} \otimes \mathbb{1} \xrightarrow{\sim} \mathbb{1}$,
satisfying the pentagon axioms and unit axioms.

Definition (EGNO 2.1.1 [3])
A monoidal category is a category \mathcal{C} equipped with:

- bifunctor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ called the tensor product,
- associativity isomorphisms

$$
\alpha_{X, Y, Z}:(X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes(Y \otimes Z),
$$

- and unit $(\mathbb{1}, \iota), \iota: \mathbb{1} \otimes \mathbb{1} \xrightarrow{\sim} \mathbb{1}$,
satisfying the pentagon axioms and unit axioms.

Pentagon Axioms
The following diagram commutes for all X, Y, Z, W :

Definition (EGNO 2.1.1 [3])
A monoidal category is a category \mathcal{C} equipped with:

- bifunctor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ called the tensor product,
- associativity isomorphisms

$$
\alpha_{X, Y, Z}:(X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes(Y \otimes Z),
$$

- and unit $(\mathbb{1}, \iota), \iota: \mathbb{1} \otimes \mathbb{1} \xrightarrow{\sim} \mathbb{1}$,
satisfying the pentagon axioms and unit axioms.
Unit Axioms
The functors:

$$
L_{\mathbb{1}}: X \xrightarrow{\sim} \mathbb{1} \otimes X, \quad \text { and } \quad R_{\mathbb{1}}: X \xrightarrow{\sim} X \otimes \mathbb{1}
$$

are autoequivalences of \mathcal{C}.

Definition (EGNO 2.1.1 [3])

A monoidal category is a category \mathcal{C} equipped with:

- bifunctor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ called the tensor product,
- associativity isomorphisms

$$
\alpha_{X, Y, Z}:(X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes(Y \otimes Z),
$$

- and unit $(\mathbb{1}, \iota), \iota: \mathbb{1} \otimes \mathbb{1} \xrightarrow{\sim} \mathbb{1}$,
satisfying the pentagon axioms and unit axioms.

We say that monoidal categories categorify the concept of a monoid; the isomorphism classes of objects in \mathcal{C} form a monoid with product \otimes.

Definition (EGNO 2.1.1 [3])

A monoidal category is a category \mathcal{C} equipped with:

- bifunctor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ called the tensor product,
- associativity isomorphisms

$$
\alpha_{X, Y, Z}:(X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes(Y \otimes Z),
$$

- and unit $(\mathbb{1}, \iota), \iota: \mathbb{1} \otimes \mathbb{1} \xrightarrow{\sim} \mathbb{1}$,
satisfying the pentagon axioms and unit axioms.

We say that monoidal categories categorify the concept of a monoid; the isomorphism classes of objects in \mathcal{C} form a monoid with product \otimes.

Often, the theory of groups is easier to study than the theory of monoids. What type of category categorifies a group?

Definition (EGNO 2.10.1-2, 2.10.11)

An object X in monoidal category \mathcal{C} has left dual X^{*} if there exist morphisms ev ${ }_{X}: X^{*} \otimes X \rightarrow \mathbb{1}, \operatorname{coev}_{X}: \mathbb{1} \rightarrow X^{*} \otimes X$ such that the compositions:

$$
\begin{aligned}
& X \xrightarrow{\operatorname{coev}_{X} \otimes \mathrm{Id}_{X}}\left(X \otimes X^{*}\right) \otimes X \xrightarrow{\alpha_{X, X^{*}, X}} X \otimes\left(X^{*} \otimes X\right) \xrightarrow{\mathrm{Id}_{X} \otimes \mathrm{ev} X} X, \\
& X^{*} \xrightarrow{\text { ooev }_{X^{*}} \otimes \mathrm{Id}_{X^{*}}}\left(X^{*} \otimes X\right) \otimes X^{*} \xrightarrow{\alpha_{X^{*}, X, X^{*}}} X^{*} \otimes\left(X \otimes X^{*}\right) \xrightarrow{\mathrm{Id}_{X *} \otimes \mathrm{ev}_{X^{*}}} X^{*},
\end{aligned}
$$

are identity morphisms.

Definition (EGNO 2.10.1-2, 2.10.11)

An object X in monoidal category \mathcal{C} has left dual X^{*} if there exist morphisms $\mathrm{ev}_{X}: X^{*} \otimes X \rightarrow \mathbb{1}, \operatorname{coev}_{X}: \mathbb{1} \rightarrow X^{*} \otimes X$ such that the compositions:

$$
\begin{aligned}
& X \xrightarrow{\operatorname{coev}_{X} \otimes \mathrm{Id}_{X}}\left(X \otimes X^{*}\right) \otimes X \xrightarrow{\alpha_{X, X^{*}, X}} X \otimes\left(X^{*} \otimes X\right) \xrightarrow{\mathrm{Id}_{X} \otimes \mathrm{ev} X} X, \\
& X^{*} \xrightarrow{\text { oove }_{X^{*}} \otimes \mathrm{Id}_{X^{*}}}\left(X^{*} \otimes X\right) \otimes X^{*} \xrightarrow{\alpha_{X^{*}, X, X^{*}}} X^{*} \otimes\left(X \otimes X^{*}\right) \xrightarrow{\mathrm{Id}_{X^{*}} \otimes \mathrm{ev}_{X^{*}}} X^{*},
\end{aligned}
$$

are identity morphisms.

A monoidal category \mathcal{C} is rigid if every object has left and right duals.

Definition (EGNO 2.11.1, 2.11.4)

For \mathcal{C} a rigid monoidal category, object X in \mathcal{C} is invertible if $\mathrm{ev}_{X}, \operatorname{coev}_{X}$ are isomorphisms.

Definition (EGNO 2.11.1, 2.11.4)

For \mathcal{C} a rigid monoidal category, object X in \mathcal{C} is invertible if $\mathrm{ev}_{X}, \operatorname{coev}_{X}$ are isomorphisms.

A 2-group (Gr-category, categorical group) is a rigid monoidal category in which every object is invertible and all morphisms are isomorphisms.

Definition (EGNO 2.11.1, 2.11.4)

For \mathcal{C} a rigid monoidal category, object X in \mathcal{C} is invertible if $\mathrm{ev}_{X}, \operatorname{coev}_{X}$ are isomorphisms.

A 2-group (Gr-category, categorical group) is a rigid monoidal category in which every object is invertible and all morphisms are isomorphisms.

We say that 2-groups categorify the concept of groups; the isomorphism classes of objects form a group with operation \otimes.

Category of G-graded Vector Spaces
We consider the category \mathbb{k} - $\mathrm{Vec}_{G}^{\omega}$ of G-graded \mathbb{k}-vectorspaces with associator data given by ω. Assume that \mathbb{k} is algebraically closed.

Each object V has direct sum decomposition:

$$
V=\bigoplus_{g \in G} V_{g} \cong \bigoplus_{g \in G} n_{g} \delta_{g}
$$

where δ_{g} is the unique simple object (up to isomorphism) in each graded component.

Category of G-graded Vector Spaces

We consider the category \mathbb{k} - $\operatorname{Vec}_{G}^{\omega}$ of G-graded \mathbb{k}-vectorspaces with associator data given by ω. Assume that \mathbb{k} is algebraically closed.

The tensor is given:

$$
V \otimes W=\bigoplus_{g \in G} \bigoplus_{\substack{x, y \in G, x y=G}} V_{x} \otimes W_{y}
$$

Category of G-graded Vector Spaces
We consider the category \mathbb{k} - $\mathrm{Vec}_{G}^{\omega}$ of G-graded \mathbb{k}-vectorspaces with associator data given by ω. Assume that \mathbb{k} is algebraically closed.

The tensor is given:

$$
V \otimes W=\bigoplus_{g \in G} \bigoplus_{\substack{x, y \in G, x y=G}} V_{x} \otimes W_{y}
$$

and the associator is given:

$$
\begin{aligned}
& \alpha_{g, h, k}:\left(\delta_{g} \otimes \delta_{h}\right) \otimes \delta_{k} \xrightarrow{\sim} \delta_{g} \otimes\left(\delta_{h} \otimes \delta_{k}\right), \\
& \alpha_{g, h, k}=\omega(g, h, k) \operatorname{Id}_{\delta_{g h k}} .
\end{aligned}
$$

Category of G-graded Vector Spaces
We consider the category \mathbb{k} - $\operatorname{Vec}_{G}^{\omega}$ of G-graded \mathbb{k}-vectorspaces with associator data given by ω. Assume that \mathbb{k} is algebraically closed.

Tracing the pentagon axioms, we see that ω satisfies:

$$
\omega(h, k, l) \omega(g, h k, l) \omega(g, h, k)=\omega(g, h, k l) \omega(g h, k, l)
$$

meaning it must in fact be a group 3-cocyle on the group of isomorphism classes of simple objects. We denote:

$$
\omega \in Z^{3}\left(G, \mathbb{k}^{*}\right) .
$$

Category of G-graded Vector Spaces
We consider the category \mathbb{k} - $\operatorname{Vec}_{G}^{\omega}$ of G-graded \mathbb{k}-vectorspaces with associator data given by ω. Assume that \mathbb{k} is algebraically closed.

Tracing the pentagon axioms, we see that ω satisfies:

$$
\omega(h, k, l) \omega(g, h k, l) \omega(g, h, k)=\omega(g, h, k l) \omega(g h, k, l)
$$

meaning it must in fact be a group 3-cocyle on the group of isomorphism classes of simple objects. We denote:

$$
\omega \in Z^{3}\left(G, \mathbb{k}^{*}\right) .
$$

Can we use the theory of group cohomology to classify 2-groups up to monoidal equivalence?

A Classification

Theorem (Baez 4.2 [1], EGNO 2.11.5)
Monoidal equivalence classes of 2-groups are in bijections with triples (G, A, ω) where:

- G is an Abelian group,
- A is a (in fact Abelian) G-module, and
- ω is an orbit in $H^{3}(G, A)$ under the action of $\operatorname{Out}(G)$

Definition
 A braided monoidal category is a monoidal category \mathcal{C} equipped with braiding isomorphisms $s_{X, Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X$ satisfying the hexagon axioms.

Definition

A braided monoidal category is a monoidal category \mathcal{C} equipped with braiding isomorphisms $s_{X, Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X$ satisfying the hexagon axioms.

Hexagon Axioms

The following diagram commutes for all X, Y, Z :

Definition
 A braided monoidal category is a monoidal category \mathcal{C} equipped with braiding isomorphisms $s_{X, Y}: X \otimes Y \xrightarrow{\sim} Y \otimes X$ satisfying the hexagon axioms.

We say that braided 2-groups categorify the concept of Abelian groups; the isomorphism classes of objects form an Abelian group with operation \otimes.

Category of G-graded Vector Spaces
Consider \mathbb{k} - $\operatorname{Vec}_{G}^{\omega}$ where G is an Abelian group. We have:

$$
\delta_{g} \otimes \delta_{h} \cong \delta_{g h}=\delta_{h g} \cong \delta_{h} \otimes \delta_{g},
$$

defines a braiding on \mathbb{k} - $\operatorname{Vec}_{G}^{\omega}$. Define the isomorphism:

$$
\begin{aligned}
& s_{g, h}: \delta_{g} \otimes \delta_{h} \xrightarrow{\sim} \delta_{h} \otimes \delta_{g}, \\
& s_{g, h}=c(g, h) \mathrm{Id}_{\delta_{g h}}
\end{aligned}
$$

Category of G-graded Vector Spaces

Consider \mathbb{k} - $\mathrm{Vec}_{G}^{\omega}$ where G is an Abelian group. We have:

$$
\delta_{g} \otimes \delta_{h} \cong \delta_{g h}=\delta_{h g} \cong \delta_{h} \otimes \delta_{g}
$$

defines a braiding on \mathbb{k} - $\operatorname{Vec}_{G}^{\omega}$. Define the isomorphism:

$$
\begin{aligned}
& s_{g, h}: \delta_{g} \otimes \delta_{h} \xrightarrow{\sim} \delta_{h} \otimes \delta_{g}, \\
& s_{g, h}=c(g, h) \mathrm{Id}_{\delta_{g h}}
\end{aligned}
$$

Tracing the hexagon axioms, we obtain:

$$
\begin{aligned}
& \omega(h, k, g) c(g, h+k) \omega(g, h, k)=c(g, k) \omega(h, g, k) c(g, h) \\
& \omega^{-1}(k, g, h) c(g+h, k) \omega^{-1}(g, h, k)=c(g, k) \omega^{-1}(g, k, h) c(h, k)
\end{aligned}
$$

which make (ω, c) into an Abelian 3-cocycle.

A Classification

Proposition (EGNO 8.4.8)
braided monoidal equivalence classes of braided 2-groups are in bijection with triples $(G, A,(\omega, c))$ where:

- G is an Abelian group,
- A is a (Abelian) G-module, and
- (ω, c) an orbit in $H_{a b}^{3}(G, A)$ under the action of $\operatorname{Aut}(G)$.

A Classification

Proposition (EGNO 8.4.8)

braided monoidal equivalence classes of braided 2-groups are in bijection with triples $(G, A,(\omega, c))$ where:

- G is an Abelian group,
- A is a (Abelian) G-module, and
- (ω, c) an orbit in $H_{a b}^{3}(G, A)$ under the action of $\operatorname{Aut}(G)$.

This is a nice classification, but cohomology is difficult to work with. Is there an easier representation still of each equivalence class of braided 2-groups?

Theorem (Eilenberg-MacLane, EGNO 8.4.9)
Let G, A Abelian groups and A a G-module. There is an isomorphism of groups:

$$
\begin{aligned}
& \operatorname{tr}: H_{a b}^{3}(G, A) \xrightarrow{\sim} \operatorname{Quad}(G, A), \\
& \operatorname{tr}[(\omega, c)](x)=q(x) \mapsto c(x, x),
\end{aligned}
$$

where $\operatorname{Quad}(G, A)$ is the group of quadratic forms on G with coefficients in A.

Theorem (Eilenberg-MacLane, EGNO 8.4.9)
Let G, A Abelian groups and A a G-module. There is an isomorphism of groups:

$$
\begin{aligned}
& \operatorname{tr}: H_{a b}^{3}(G, A) \xrightarrow{\sim} \operatorname{Quad}(G, A), \\
& \operatorname{tr}[(\omega, c)](x)=q(x) \mapsto c(x, x),
\end{aligned}
$$

where $\operatorname{Quad}(G, A)$ is the group of quadratic forms on G with coefficients in A.

A priori, it seems like this map discards a lot of necessary information about the 3 -cocycle $[(\omega, c)]$. To show that tr^{-1} is well-defined, we demonstrate (ω, c) for which $\operatorname{tr}[(\omega, c)]=q$.

Definition (Braunling 3.1, 3.2 [2])
Let $q \in \operatorname{Quad}(G, A)$ a quadratic form. Write its polarization form:

$$
b(g, h)=\frac{q(g+h)}{q(g) q(h)} .
$$

Definition (Braunling 3.1, 3.2 [2])
Let $q \in \operatorname{Quad}(G, A)$ a quadratic form. Write its polarization form:

$$
b(g, h)=\frac{q(g+h)}{q(g) q(h)} .
$$

We say triple $\left(F_{0}, \pi, C\right)$ is a pre-admissible presentation for q if:
(1) $\pi: F_{0} \rightarrow G$ is a surjective group homomorphism,
(2) $C: F_{0} \otimes_{\mathbb{Z}} F_{0} \rightarrow A$ is a bilinear form such that:

$$
b(\pi x, \pi y)=C(x, y)+C(y, x)
$$

(3) C is alternating on ker $\pi:=F_{1}$, meaning:

$$
C(x, x)=0, \quad \forall x \in F_{1} .
$$

Definition (Braunling 3.1, 3.2 [2])
Let $q \in \operatorname{Quad}(G, A)$ a quadratic form. Write its polarization form:

$$
b(g, h)=\frac{q(g+h)}{q(g) q(h)} .
$$

We say that $\left(F_{0}, \pi, C\right)$ is admissible if we additionality satisfy:
(1) C vanishes on F_{1}, meaning:

$$
C(x, y)=0, \quad \forall x, y \in F_{1} .
$$

Definition (Braunling 3.1, 3.2 [2])
Let $q \in \operatorname{Quad}(G, A)$ a quadratic form. Write its polarization form:

$$
b(g, h)=\frac{q(g+h)}{q(g) q(h)} .
$$

We say that $\left(F_{0}, \pi, C\right)$ is admissible if we additionality satisfy:
(1) C vanishes on F_{1}, meaning:

$$
C(x, y)=0, \quad \forall x, y \in F_{1} .
$$

We say that (pre-)admissible presentation $\left(F_{0}, \pi, C\right)$ is optimal if:

$$
Q(x)=C(x, x), \quad \forall x \in F_{0} .
$$

Definition

For a surjective group homomorphism $\pi: F_{0} \rightarrow G$, we say that $(\cdot \cdot)$ is an admissible lift if:

$$
\pi \tilde{x}=x, \quad \forall x \in G \quad \text { and } \tilde{0}=0
$$

Definition

For a surjective group homomorphism $\pi: F_{0} \rightarrow G$, we say that $(\tilde{\cdot})$ is an admissible lift if:

$$
\pi \tilde{x}=x, \quad \forall x \in G \quad \text { and } \tilde{0}=0 .
$$

It is clear that, for a (pre-)admissible presentation $\left(F_{0}, \pi, C\right)$, such an admissible lift always exists. We define a function:

$$
\begin{aligned}
& L: G \times G \rightarrow F_{0}, \\
& L(x, y)=(\widetilde{(x+y)}-\tilde{x}-\tilde{y}
\end{aligned}
$$

Existence Theorems

Proposition (Braunling 3.4)
For every (pre-) admissible presentation $\left(F_{0}, \pi, C\right)$, there exists C^{\prime} such that $\left(F_{0}, \pi, C^{\prime}\right)$ is optimal (pre-) admissible.

Existence Theorems

Proposition (Braunling 3.4)
For every (pre-) admissible presentation $\left(F_{0}, \pi, C\right)$, there exists C^{\prime} such that $\left(F_{0}, \pi, C^{\prime}\right)$ is optimal (pre-)admissible.

Theorem (Braunling 6.1, 6.2)
Given $\left(F_{0}, \pi, C\right)$ an optimal admissible presentation for $q \in \operatorname{Quad}(G, A)$ and (•) an admissible lift, then:

$$
\omega(x, y, z):=-C(\tilde{x}, L(y, z)), \quad c(x, y):=C(\tilde{x}, \tilde{y})
$$

define an Abelian 3-cocycle such that $\operatorname{tr}[(\omega, c)]=q$.

Proposition (Braunling 4.5)

Suppose we have direct sum decomposition:

$$
G=\left(\bigoplus_{\mathcal{I}} \mathbb{Z} / n_{j} \mathbb{Z}\right) \oplus\left(\bigoplus_{\mathcal{J}} \mathbb{Z}\right)
$$

Then, an optimal admissible presentation for $q \in \operatorname{Quad}(G, A)$ exists, and is of the form:

$$
\begin{gathered}
0 \longrightarrow F_{1}:=\bigoplus_{\mathcal{I}} \mathbb{Z} \longrightarrow F_{0}:=\bigoplus_{\mathcal{I}} \amalg \mathcal{J} \mathbb{Z} \xrightarrow{\pi} G \longrightarrow 0 \\
C\left(e_{i}, e_{j}\right)= \begin{cases}B\left(e_{i}, e_{j}\right) & i<j \\
Q\left(e_{i}\right) & i=j \\
0 & i>j\end{cases}
\end{gathered}
$$

Why is this Sufficient?

Recall our definition of the polarization of quadratic form:

$$
B(x, y)=Q(x+y)-Q(x)-Q(y)
$$

Why is this Sufficient?

Recall our definition of the polarization of quadratic form:

$$
B(x, y)=Q(x+y)-Q(x)-Q(y)
$$

We recall that C is \mathbb{Z}-bilinear. To show optimality, we expand:

$$
\begin{aligned}
C(x, x) & =C\left(\sum_{i} x_{i} e_{i}, \sum_{i} x_{i} e_{i}\right)=\sum_{i, j} x_{i} x_{j} C\left(e_{i}, e_{j}\right) \\
& =\sum_{i<j} x_{i} x_{j} B\left(e_{i}, e_{j}\right)+\sum_{i} x_{i}^{2} Q\left(e_{i}\right),
\end{aligned}
$$

Why is this Sufficient?

Recall our definition of the polarization of quadratic form:

$$
B(x, y)=Q(x+y)-Q(x)-Q(y)
$$

as well as:

$$
\begin{aligned}
Q(x) & =Q\left(\sum_{i} x_{i} e_{i}\right)=B\left(x_{i_{0}} e_{i_{0}}, \sum_{i>i_{0}} x_{i} e_{i}\right)+Q\left(x_{i_{0}} e_{i_{0}}\right)+Q\left(\sum_{i>i_{0}} x_{i} e_{i}\right) \\
& =\cdots=\sum_{i<j} B\left(x_{i} e_{i}, x_{j} e_{j}\right)+\sum_{i} Q\left(x_{i} e_{i}\right) \\
& =\sum_{i<j} x_{i} x_{j} B\left(e_{i}, e_{j}\right)+\sum_{i} x_{i}^{2} Q\left(e_{i}\right) .
\end{aligned}
$$

Theorem (Braunling 7.1)
Let G, A Abelian groups, $q \in \operatorname{Quad}(G, A)$ and:

$$
G=\left(\bigoplus_{\mathcal{I}} \mathbb{Z} / n_{j} \mathbb{Z}\right) \oplus\left(\bigoplus_{\mathcal{J}} \mathbb{Z}\right)
$$

Write $\left\{e_{i}: i \in \mathcal{I} \coprod \mathcal{J}\right\}$ the set of generators.

Theorem (Braunling 7.1)
Let G, A Abelian groups, $q \in \operatorname{Quad}(G, A)$ and:

$$
G=\left(\bigoplus_{\mathcal{I}} \mathbb{Z} / n_{j} \mathbb{Z}\right) \oplus\left(\bigoplus_{\mathcal{J}} \mathbb{Z}\right)
$$

Write $\left\{e_{i}: i \in \mathcal{I} \coprod \mathcal{J}\right\}$ the set of generators.

Define:

$$
\sigma_{i, j}= \begin{cases}b\left(e_{i}, e_{j}\right) & i<j, \\ q\left(e_{i}\right) & i=j, \\ 0 & i>j\end{cases}
$$

Theorem (Braunling 7.1)
Let G, A Abelian groups, $q \in \operatorname{Quad}(G, A)$ and:

$$
G=\left(\bigoplus_{\mathcal{I}} \mathbb{Z} / n_{j} \mathbb{Z}\right) \oplus\left(\bigoplus_{\mathcal{J}} \mathbb{Z}\right)
$$

Write $\left\{e_{i}: i \in \mathcal{I} \coprod \mathcal{J}\right\}$ the set of generators.

Then,

$$
\omega(x, y, z)=\sum_{\substack{i \in \mathcal{I} \\ y_{j}+z_{j} \geq n_{j}}} x_{j} n_{j} \sigma_{j, j}, \quad c(x, y)=\sum_{i, j \in \mathcal{I} \amalg \mathcal{J}} x_{i} y_{j} \sigma_{i, j} .
$$

define an Abelian 3-cocycle with $\operatorname{tr}[(\omega, c)]=q$.

Proof of Braunling 7.1 (Sketch).
By proposition (Br 4.5), we know an optimal admissible presentation of G exists. We need only choose an admissible lift.

Proof of Braunling 7.1 (Sketch).
By proposition (Br 4.5), we know an optimal admissible presentation of G exists. We need only choose an admissible lift.

We choose the standard lift:

$$
\left(\widetilde{x+n_{j} \mathbb{Z}}\right)=[x]_{n_{j}}
$$

which is the remainder of $x \bmod n_{j}$ as an integer. Thus,

$$
L\left(x+n_{j} \mathbb{Z}, y+n_{j} \mathbb{Z}\right)= \begin{cases}-n_{j} & x+y \geq n_{j} \\ 0 & x+y<n_{j}\end{cases}
$$

By $(\operatorname{Br} 6.2)$, we have that $\operatorname{tr}[(\omega, c)]=q$.

What about Fusion Categories?

We consider now a pointed, braided fusion category \mathcal{C} over \mathbb{C}. The subclass of simple objects and isomorphisms between them give a finite Abelian group $\left[\left(\mathcal{C}_{\text {simp }}, \otimes\right)\right]:=G$. We thus wish to pin down:

$$
\operatorname{tr}: H_{a b}^{3}\left(G, \mathbb{C}^{*}\right) \xrightarrow{\sim} \operatorname{Quad}\left(G, \mathbb{C}^{*}\right) .
$$

What about Fusion Categories?

We consider now a pointed, braided fusion category \mathcal{C} over \mathbb{C}. The subclass of simple objects and isomorphisms between them give a finite Abelian group $\left[\left(\mathcal{C}_{\text {simp }}, \otimes\right)\right]:=G$. We thus wish to pin down:

$$
\operatorname{tr}: H_{a b}^{3}\left(G, \mathbb{C}^{*}\right) \xrightarrow{\sim} \operatorname{Quad}\left(G, \mathbb{C}^{*}\right)
$$

The inclusions on components give pullbacks:

$$
\begin{aligned}
& \iota_{k}: \mathbb{Z} / n_{k} \mathbb{Z} \hookrightarrow G \\
& \iota_{k}^{*}: \operatorname{Quad}\left(G, \mathbb{C}^{*}\right) \rightarrow \operatorname{Quad}\left(\mathbb{Z} / n_{k} \mathbb{Z}, \mathbb{C}^{*}\right) \cong \operatorname{Hom}\left(\mathbb{Z} /\left(n_{k}^{2}, 2 n_{k}\right) \mathbb{Z}, \mathbb{C}^{*}\right),
\end{aligned}
$$

from a theorom by Whitehead. Thus, each $q\left(e_{k}\right)$ is $\left(n_{j}^{2}, 2 n_{j}\right)$-torsion.

What about Fusion Categories?

We consider now a pointed, braided fusion category \mathcal{C} over \mathbb{C}. The subclass of simple objects and isomorphisms between them give a finite Abelian group $\left[\left(\mathcal{C}_{\text {simp }}, \otimes\right)\right]:=G$. We thus wish to pin down:

$$
\operatorname{tr}: H_{a b}^{3}\left(G, \mathbb{C}^{*}\right) \xrightarrow{\sim} \operatorname{Quad}\left(G, \mathbb{C}^{*}\right)
$$

Additionally, we find that since:

$$
\left(n_{k}, n_{l}\right)=a n_{k}+b n_{l}
$$

then each term $b\left(e_{k}, e_{l}\right)$ is $\left(n_{k}, n_{l}\right)$-torsion.

Theorem (Braunling 8.1)

There is a bijection between:

Theorem (Braunling 8.1)

There is a bijection between:

- Choices of parameters:

$$
\begin{aligned}
& q^{(k)} \in\left\{0,1, \ldots, \operatorname{gcd}\left(n_{k}^{2}, 2 n_{k}\right)-1\right\} \text { for all } k \\
& b^{(k, l)} \in\left\{0,1, \ldots, \operatorname{gcd}\left(n_{k}, n_{l}\right)-1\right\} \text { for all } k<l .
\end{aligned}
$$

Theorem (Braunling 8.1)
There is a bijection between:

- Choices of parameters:

$$
\begin{aligned}
& q^{(k)} \in\left\{0,1, \ldots, \operatorname{gcd}\left(n_{k}^{2}, 2 n_{k}\right)-1\right\} \text { for all } k \\
& b^{(k, l)} \in\left\{0,1, \ldots, \operatorname{gcd}\left(n_{k}, n_{l}\right)-1\right\} \text { for all } k<l .
\end{aligned}
$$

- Abelian 3-cocycles given:

$$
\begin{aligned}
& \omega(x, y, z)=\prod_{k} \exp \left(\frac{2 \pi i q^{(k)}}{\left(n_{k}^{2}, 2 n_{k}\right)} x_{k}\left(\left[y_{l}\right]_{n_{l}}+\left[z_{l}\right]_{n_{l}}-\left[y_{l}+z_{l}\right]_{n_{l}}\right)\right) \\
& c(x, y)=\prod_{k<l} \exp \left(\frac{2 \pi i b^{(k, l)}}{\left(n_{k}, n_{l}\right)} x_{k} y_{l}\right) \cdot \prod_{k} \exp \left(\frac{2 \pi i q^{(k)}}{\left(n_{k}^{2}, 2 n_{k}\right)} x_{k}^{2}\right)
\end{aligned}
$$

Theorem (Braunling 8.1)
There is a bijection between:

- Choices of parameters:

$$
\begin{aligned}
& q^{(k)} \in\left\{0,1, \ldots, \operatorname{gcd}\left(n_{k}^{2}, 2 n_{k}\right)-1\right\} \text { for all } k \\
& b^{(k, l)} \in\left\{0,1, \ldots, \operatorname{gcd}\left(n_{k}, n_{l}\right)-1\right\} \text { for all } k<l .
\end{aligned}
$$

- Quadratic forms given:

$$
\begin{aligned}
& b\left(e_{k}, e_{l}\right)=\exp \left(\frac{2 \pi i b^{(k, l)}}{\left(n_{k}, n_{l}\right)}\right), \\
& q\left(e_{k}\right)=\exp \left(\frac{2 \pi i q^{(k)}}{\left(n_{k}^{2}, 2 n_{k}\right)}\right) .
\end{aligned}
$$

Bibliography

固 John C. Baez and Michael Shulman.
Lectures on n-categories and cohomology. 2006.

囯 Oliver Braunling.
Quinn's formula and abelian 3-cocycles for quadratic forms, 2020.
© Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik.
Tensor categories, volume 205.
American Mathematical Soc., 2016.

