Extension Theory for Categories

Kylan Schatz (they/them), 8/2/2023
kaschatz@ncsu.edu

Preliminaries

- A group is a set (G) together with binary operation (*), such that
- There exists identity: $\exists 1 \in G$, such that $1 g=g 1=g, \forall g \in G$,
- There exist inverses: $\forall g \in G, \exists!g^{-1} \ni g g^{-1}=g^{-1} g=1$,
- The product is associative: $(g * h) * k=g *(h * k)$.
- A group is Abelian if it is commutative: $g h=h g$.
- Example: The integers with addition $(\mathbb{Z},+)$.
- Sub-example: The integers mod n with addition $\left(\mathbb{Z}_{n},+\right)$.
- Example: Complex numbers with multiplication ($\mathbb{C} \backslash\{0\}, *)$.

Preliminaries

- A short exact sequence is a sequence of Abelian groups:
- $0 \rightarrow A \stackrel{\varphi}{\xrightarrow{*}} B \xrightarrow{\psi} C \rightarrow$, such that $\operatorname{Im}(\phi)=\operatorname{ker}(\psi)$.
- We say that B is an extension of C by A.
- Example: The direct product $G \times H$ is an extension of H by G and conversely.
- Example: The semidirect product $G \rtimes H$ is an extension of H by G.
- $G \cong G \rtimes\{1\}$ is an injection and $(g, h) \mapsto h$ is a surjection.

Preliminaries

- A ring is a set (R) together with two binary ops $(+, *)$, such that
- R is an additive abelian group: $(R,+)$ Abelian,
- Multiplication distributes over addition: $r *(s+t)=r * s+r * t$.
- A ring is called unital if $(R, *)$ is a monoid: $\exists!1 \in R$, s.t. $1 r=r 1=r$.
- Example: The group ring $\mathbb{Z}[G]=\mathbb{Z} G=\operatorname{span}_{\mathbb{Z}}\{\mathrm{g} \in G\}$, with ops
- Addition: $\sum a_{g} g+\sum b_{g} g=\sum\left(a_{g}+b_{g}\right) g$,
- Multiplication: $\left(\sum a_{g} g\right) *\left(\sum b_{g} g\right)=\sum a_{g} b_{h} g h$.

Preliminaries

- For G a group, a G-module M is an abelian group together with group homomorphism $\rho: G \rightarrow \operatorname{Aut}(M)$ for which:
- $\rho(g)\left(m_{1}+m_{2}\right)=\rho(g) m_{1}+\rho(g) m_{2}$.
- Example: The trivial module A: $\rho(g) a=a$.
- Example: The left-regular module $G: \rho(g)(h+k)=g+h+k$.
- Example: The free $(\mathbb{Z}) G$-module generated by M :
- The group $(\mathbb{Z} M,+)$ with action $\rho(g)\left(\sum b_{m} m\right)=\sum b_{m} \rho(g)(m)$.
- Remark: The study of G-modules gives examples of group extensions.

Question

- What happens if we relax some of the axioms of groups?
- What if "equals" is not really equality?
- What if we replace every "equals" with "isomorphic to?"

Categories

- A category \mathcal{C} is a class $\operatorname{Ob}(\mathcal{C})$ together with morphisms $\mathcal{C}(A, B)$ s.t.:
- There exist identities: $\operatorname{id}_{\mathrm{A}} \in \mathcal{C}(A, A)$,
- Composition is associative: $f \in \mathcal{C}(A, B), g \in \mathcal{C}(B, C) \Rightarrow g f \in \mathcal{C}(A, C)$.
- Example: (Vertical) categorification of a set X :
- Construct a category \mathcal{X} with $\mathrm{Ob}(\mathcal{X})=X$ and $X(A, B)=\delta_{A=B} \mathrm{id}$.
- Example: (Horizontal) categorification of a group
- For a group G, we may construct a category \mathcal{G} with $\mathrm{Ob}(\mathcal{G})=\{*\}$ and morphisms $\mathcal{G}(*, *)=G$ are labeled by elements of G.

Categories

- An Abelian category is a category \mathcal{C} together with bifunctor $\oplus: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ called the direct sum, which admits kernels and cokernels.
- A monoidal category is an Abelian category together with
- Bilinear bifunctor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$, called the tensor product
- Isomorphisms $\alpha_{X, Y, Z}:(X \otimes Y) \otimes Z \xrightarrow{\sim} X \otimes(Y \otimes Z)$ satisfying the pentagon equations,
- Unit object $(\mathbf{1}, \iota), \mathbf{1} \in \mathcal{C}$ satisfying the triangle equations.
- Example: The category \mathbb{k} - Vec of vector spaces over \mathbb{k}.
- The direct sum comes from concatenation of ordered bases.
- The associator identifies $(V \otimes U) \otimes W \xrightarrow{\sim} V \otimes(U \otimes W)$. This is not equality!

Categories

- A monoidal category is called strict if α is equality.
- A monoidal category is pointed if each object has a tensor inverse.
- A monoidal category is braided if it has:
- Braiding isomorphisms $S=\left\{S_{x, y}: X \otimes Y \stackrel{\sim}{\rightarrow} Y \otimes X\right\}$ satisfying the hexagon equations.
- A monoidal category is fusion if there are finitely many simple objects.

Categories

- Remark: Monoidal categories are the (vertical) categorification of monoids.
- Pointed categories are the (vertical) categorification of groups,
- Braided categories categorify Abelian groups,
- Fusion categories categorify finite groups.
- Important example: $\operatorname{Vec}(G,(\omega, c))$ is a pointed braided fusion category with:
- Simple objects labeled by group elements δ_{g}, and $\delta_{g} \otimes \delta_{h}=\delta_{g h}$,
- Associator $\alpha_{\delta_{x}, \delta_{y}, \delta_{z}}: \delta_{x} \otimes\left(\delta_{y} \otimes \delta_{z}\right) \sim \sim\left(\delta_{x} \otimes \delta_{y}\right) \otimes \delta_{z}=\omega(x, y, z)$,
- Braiding $S_{\delta_{x}, \delta_{y}}: \delta_{x} \otimes \delta_{y} \xrightarrow{\rightarrow} \delta_{y} \otimes \delta_{x}=c(x, y)$.

What's the Big Idea?

- There is the notion of a group action on a category.
- There is an analogue to group extensions using group actions on categories.
- Oftentimes, it is enough to describe the resulting category with group theoretical and cohomology data.

What's the Big Idea?

- Example: Trivial $\mathbb{Z}_{n} \times \mathbb{Z}_{m} \curvearrowright \operatorname{Vec}\left(\mathbb{Z}_{(n, m)},(\omega, c)\right)$ results in:
- Extension $\mathbb{Z}_{(n, m)} \hookrightarrow \mathbb{Z}_{(n, m)} \rtimes_{\varphi}\left(\mathbb{Z}_{n} \times \mathbb{Z}_{m}\right) \rightarrow \mathbb{Z}_{n} \times \mathbb{Z}_{m}$, where $\varphi((h, t),(k, l))=$ gtk.
- Remark: Looks like a semidirect product.
- Example: $\mathbb{Z}_{2} \curvearrowright \operatorname{Vec}(A,(\omega, c))$ by inverses, A finite abelian results in:
- Extension $A \hookrightarrow A \rtimes_{\psi}\left(\frac{A}{A / K}\right) \rightarrow\left(\frac{A}{A / K}\right)$, where $\psi\left(\overline{b_{1}}+\frac{A}{K}, \overline{b_{2}}+\frac{A}{K}\right)=\overline{b_{1}}+\overline{b_{2}}+\bar{h}+\frac{A}{K}$.
- Remark: Looks like Tambara-Yamagami category.

Closing

- I was "scooped" on this project :/ but the tools are still useful!
- Research moving in to more braided-category theory direction.
- Upcoming project to incorporate operator theory (an analysis topic).

Questions?

$$
\begin{aligned}
& \beta_{g}^{k, l} \beta_{g}^{j, k l} \omega^{g_{*} j, g_{*} k, g_{*} l}=\omega^{j, k, l} \beta_{g}^{j, k} \beta_{g}^{j k, l} \\
& \beta_{g}^{l, k} c^{g_{*} k, g_{*} l}=c^{k, l} \beta_{g}^{k, l} \\
& \mu_{f g, h}^{k} \mu_{f, g}^{h_{*} k}=\mu_{g, h}^{k} \mu_{f, g h}^{k} \\
& \mu_{g, h}^{k l} \beta_{h}^{k, l} \beta_{g}^{h_{*} k, h_{*} l}=\beta_{g h}^{k, l} \mu_{g, h}^{k} \mu_{g, h}^{l}
\end{aligned}
$$

$\operatorname{dim} \operatorname{Hom}_{\times}\left(V_{b_{3}}^{0}, V_{b_{1}}^{0} \otimes V_{b_{2}}^{0}\right)=\delta_{b_{1}+b_{2}=b_{3}}$,
$\operatorname{dim} \operatorname{Hom}_{\times}\left(V_{\bar{b}_{2}}^{1}, V_{b}^{0} \otimes V_{\bar{b}_{1}}^{1}\right)=\operatorname{dim} \operatorname{Hom}_{\times}\left(V_{\bar{b}_{2}}^{1}, V_{\bar{b}_{1}}^{1} \otimes V_{b}^{0}\right)=\delta_{\bar{b}_{2}=b+\bar{b}_{1}}$,
$\operatorname{dim} \operatorname{Hom}_{\times}\left(V_{b}^{0}, V_{\bar{b}_{1}}^{1} \otimes V_{\bar{b}_{2}}^{2}\right)=\delta_{b \in\left(\bar{b}_{1}+\bar{b}_{2}+h\right)+G \backslash \bar{G}}$.

