A Hierarchy of Symmetry for QCA

Kylan Schatz

Abstract Spin Systems

An *abstract spin system* (ASC) consists of:

- A *net* of algebras $2^{\mathbb{Z}} \to C^*(\mathbb{C})$ such that:
 - i. If $I \subseteq J$, then $A_I \subseteq A_I$ unital, and
 - ii. If $I \cap J = \emptyset$, then $[A_I, A_j] = 0$.

Given ascending chain $I_1 \subseteq I_2 \subseteq \cdots$ such that $\bigcup I_i = \mathbb{Z}$, $A = \overline{\bigcup A_{I_i}}^{\|\cdot\|}$ is a (quasi-local) AF-algebra, called the *inductive limit*.

Abstract Spin Systems

Suppose you are given (quasi-local) AF-algebra A.

If you can construct (poset) morphism $2^{\mathbb{Z}} \rightarrow \{A_I \subset A \text{ unital} : A_I \text{ fd}\}$ (satisfying i. ii.) then you can recover an abstract spin system!

Fusion Categorical Spin Systems

Let C a (multi)fusion category and $X \in Ob C$. We define:

The resulting *fusion spin system* (FSC) is called A(C, X).

Quantum Cellular Automata

A *quantum cellular automata* (QCA) is a bounded spread isomorphism: $\alpha \in \text{Aut } A$ such that $\forall I$, there exists R > 0 such that $\alpha A_I \subseteq A_{I \pm R}$.

Quantum Cellular Automata

Fusion spin systems correspond to *equivariantization* of "ordinary" spin systems:

Given (multi)fusion $D, X \in Ob D$, and action $D \curvearrowright A(\text{Vec}, \text{End } X)$, then: $A(\text{Vec}, \text{End } X)^D \cong A(D^{op}, X)$.

Additionally, $\alpha \in \text{QCA } A(D^{op}, X)$ extends to $\tilde{\alpha} \in \text{QCA } A(\text{Vec}, \text{End } X)$ iff $\text{DHR}(\alpha)L \cong L$ as algebra objects.

Extensions of Spin Systems

Given $F: C \to D$ a *dominant* tensor functor, then we have lift: $\tilde{F}: A(C, X) \to A(D, FX).$

If $F: C \to D$ dominant, then $\exists ! A \in Z(C)$ an algebra object such that $D \cong C_A$ (category of right A-modules) as tensor categories.

Additionally, $F: C \to D \cong \iota: C \hookrightarrow C_A$, which sends $X \mapsto X \otimes A$.

Right Modules

Define the category $\widehat{C_A}$ with $Ob \ \widehat{C_A} = Ob \ C$,

- Morphisms $\widehat{C_A}(X,Y) = C(X,Y \otimes A)$
- Composition $f \circ g = (id \otimes \mu) \circ (f \otimes id) \circ g$
- Tensor $f \otimes g = (id \otimes id \otimes \mu) \circ (id \otimes \psi_Y \otimes id) \circ (g \otimes f)$

Right Modules

The category $\widehat{C_A}$ is tensor, but we do not take simples to simples. To get (multi)fusion, we must take *idempotent completion*.

Given category C, we define its *idempotent completion* C^0 with

- Objects Ob $C^0 = \{(X, p)\}, X \in Ob C, p^2 = p \in End X$, and
- Morphisms $C^0((X, p), (Y, q)) = \{f \in C(X, Y) : fp = f = qf\}$

The category of *right A-modules* is $C_A = \widehat{C_A}^0$.

Extensions of Spin Systems

Given $F: C \to D$ a *dominant* tensor functor, then we have lift: $\tilde{F}: A(C, X) \to A(D, FX).$

To map spin systems, we take $f \mapsto f \otimes \iota$:

Hypergroups

A hypergroup H (over \mathbb{C}) is a convex set with unity, associative convex multiplication, and weak inverses.

- There exists unique $e_0 \in H$ such that $x = e_0 x = x e_0$ for all $x \in H$.
- There exists a distinguished convex basis $\{e_i\} \subseteq H$, meaning $e_i e_j = \sum \lambda_{i,j}^k e_k$, where $\lambda_{i,j}^k \ge 0$ and $\sum \lambda_{i,j}^k = 1$.
- For each e_i , there is a unique $e_{\overline{i}}$ such that $\lambda_{i,\overline{i}}^0 \neq 0$.

Hypergroups

Example: The convex hull of $G \subseteq \mathbb{C}G$ is a hypergroup.

Example: (End *A*,*,°) for *A* a commutative algebra object is a hypergroup with basis of *convolution idempotents* called HyperAut *A*.

A hypergroup action of H on commutative algebra object A is a hypergroup homomorphism $H \rightarrow$ HyperAut A.

Hypergroup Symmetries of QCA

For $F: C \rightarrow D$ a dominant tensor functor, we have commutative:

When does this diagram commute with hypergroup action $H \curvearrowright A$?

$$A(C,X) \xrightarrow{\tilde{\iota}} A(C_A, \iota X)$$

$$A(C,X) \xrightarrow{\tilde{F}} A(D, FX)$$

Hypergroup Symmetries of QCA

Recall: A commutative algebra object means End A has basis of convolution idempotents (projections) $\{P_i\}$.

Claim: $A(C_A, \iota X)^{\text{HyperAut } A} = A(C, X)$, by

Questions?