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Introduction

What’s the Big Idea?

Phases of Matter

Symmetries

In physics, orders are used to
study phases of matter.

Certain symmetries are
assigned to each phase.

Breaking of symmetry can
indicate a change in phase.

Classically, order parameters
are group symmetries.

In (2+1)D topological case,
order parameters are MTCs.
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Introduction

Topological Order

Topological phases of matter are important in the study of
condensed matter physics:

e.g. (topological) quantum computation, superconductors.

A (2+1)D topological order is an assignment of a modular
category to a (2+1)D gapped topological phase of matter.

When the phase carries an additional group symmetry, one may
construct a corresponding symmetry enriched order.

(2+1)D symmetry enriched topological orders (SETOs) are
G -crossed braided extensions of a modular category.
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Introduction

Anyon Condensation

We are particularly interested in phase transition between gapped
SETOs described by anyon condensation.

Condensable anyons in a phase are described by commutative
algebra objects in the associated MTC.

Transitions across a gapped boundary to the trivial phase
correspond to Lagrangian algebra objects.

Obstructions to the spontaneous breaking of symmetry under
anyon condensation are equivalent to equivariant structure on
the condensed anyon.
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Preliminaries

Graphical Calculus for Monoidal Categories

We use the graphic calculus and the bottom-up / “optimistic”
convention to represent the monoidal category C:

X ∈ Ob(C)⇝ X , f ∈ HomC(X ,Y )⇝

X

Y

f ,

X

Z

g ◦ f =

X

Z

f

g

Y , and

X ⊗ Z

Y ⊗W

f ⊗ g =

X

Y

f

Z

W

g .
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Preliminaries

Modular Categories

Definition

A modular category is a ribbon fusion category for which the matrix:

S =

(
TrVi⊗Vj

(
CVj ,Vi

◦CVi ,Vj

))
i , j

is invertible.

This is the ‘correct’ categorification of a finite group.
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Preliminaries

Drinfeld Centers

Definition ([EGNO16, Definition 7.13.1])

Associated to the fusion category C is its Drinfeld center Z(C),
whose objects are tuples (X , ψ) where X ∈ Ob(C) and
ψ : X ⊗ ∼−→ ⊗ X is a half-braiding.

Remark ([BV13])

For C unitary fusion, the center Z(C) has the natural structure of a
modular category with the braiding C(X ,ψ),(Y ,φ) = ψY .
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Preliminaries

The Induction Functor

Definition ([KB10, Theorem 2.3], [BJ22, Section 3.1])

The induction functor I : C −→ Z(C) is the (left) adjoint to the
forgetful functor Forg : Z(C) −→ C. We use the concrete model:

X 7→

( ⊕
U∈Irr C

U ⊗ X ⊗ Ū , ψI (X )

)
, f 7→

⊕
U∈Irr C

idU ⊗f ⊗ idŪ ,

ψI (X ),W =
⊕

U,V∈Irr C

∑
i

√
dU
√
dV

U

V

X

X

Ū

V̄W

W

i∗ i , δi, j =
Ū

V

W

i

j∗
.
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Preliminaries

Recovering C from its center Z(C)

For C unitary fusion, the object L := I (1) has the structure of a
connected, separable, commutative Frobenius algebra called the
canonical Lagrangian algebra.

Proposition (Bruguiéres, Natale 2010)

IL : X 7→ (I (X ), ηIX ,1) is a tensor equivalence and the following
commutes up to monoidal natural isomorphism:

C

Z(C) Z(C)L

IL
Forg

Free

.
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Preliminaries

2-Groups

Definition ([EGNO16, Definition 2.11.4])

A 2-group (Gr-category, categorical group) is a 2-category with one
object whose morphisms are invertible up to 2-morphism and whose
2-morphisms are invertible.

Example

Groups are 2-groups.

Each monoidal category has an associated 2-group.

The autoequivalences of a category form a 2-group.
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Obstruction Theory

The 2-Group Autbr⊗ (C|A)

Definition (Bischoff, Jones, Lu, Penneys 2019)

Let C a braided monoidal category, A ∈ Ob C a commutative,
separable algebra object. The categorical group Autbr⊗ (C|A) has one
object, whose

morphisms are tuples (α, ηα, λα) where

(α, ηα) is a braided monoidal autoequivalence and
λα : A

∼−→ α(A) an algebra isomorphism, and

2-morphisms are monoidal natural transformations
π ∈ Hom((α, ηα), (β, ηβ)) such that πA ◦ λα = λβ.
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Obstruction Theory

Symmetry Breaking

Big Idea: The 2-group Autbr⊗ (C|A) describes equivariant structures on
the algebra object A.

Theorem (Bischoff, Jones, Lu, Penneys 2019)

Obstructions to preservation of group symmetry under anyon
condensation are equivalent to lifts:

Autbr⊗ (C|A) Autbr⊗ (C loc
A )

G Autbr⊗ (C)

FA

.
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Obstruction Theory

Classifying Obstructions

Question

Is there a characterization of the 2-group Autbr⊗ (C|A)?

Theorem (S 2024)

Let D unitary fusion and L = I (1) its canonical Lagrangian algebra.
Then, there is an equivalence of 2-groups:

I L : Aut⊗(D)
∼−→ Autbr⊗ (Z(D)|L).

Remark

This is a sort of ‘bulk-boundary correspondence’ for symmetries.
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Obstruction Theory

What Was Known

Remark ([JMNR21], [ENO10])

It is already known that there is group homomorphism:

I L : Aut⊗(D) −→ Autbr⊗ (Z(D)), with

Im(I L) = Stab(L).

We provide a categorification and a factorization:

Autbr⊗ (Z(D)|L)

Aut⊗(D) Stab(L) Autbr⊗ (Z(D))

Forg
I L
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Obstruction Theory

Outline of Proof

The equivalence IL [BN11] lifts to an equivalence of 2-groups.

In their paper describing symmetry breaking from anyon
condensation, [BJLP19] define a functor FL.

We show the following diagram commutes (up to monoidal
natural isomorphism) and that FL is faithful.

Aut⊗(D) Autbr⊗ (Z(D)|L)

Aut⊗(Z(D)L)

I L

IL
FL
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Hypergroups

Hypergroups

Definition

A hypergroup is a simplex H = convC{e0, . . . , en−1} which is:

a monoid with identity e0,

whose multiplication is H-linear, and

for which each eı̇ has a unique weak inverse e ı̄.

Example

convC{G} ⊆ C[G ] is a hypergroup.

characters of a finite group form a hypergroup.
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Hypergroups

Grothendieck Hypergroup

Example

Associated to the fusion ring C is the hypergroup:

K0(C ) := convC{dX X}X∈B(C), dX :=
√

c1
X ,X̄

.

For fusion category C with associated fusion ring Fus C, we denote:

K0(C) := K0(Fus C)

Kylan Schatz (NCSU) Lagrangian Equivariant Autoequivalences 17 / 24



Hypergroups

HyperAutomorphisms

Proposition (Bischoff, Davydov 2020)

For commutative separable algebra object A in a unitary modular
category, End(A) is commutative semisimple with respect to the
convolution product.

Definition

HyperAut(A) is the hypergroup whose extreme points are minimal
convolution idempotents of End(A). A hypergroup action of H on A
is a morphism:

H −→ HyperAut(A).
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Hypergroups

Some 2-Subgroups

Definition

Suppose you have hypergroup action H ↷ A. Autbr⊗ (C|A,H) is the
full 2-subgroup of Autbr⊗ (C|A) for which:

λα ◦ ei = α(ei) ◦ λα, ∀ei ∈ H.

Definition

Let E ⊆ D. Aut⊗(D|E) is the full 2-subgroup of Aut⊗(D) where:

α|E ∼= IdE as functors.
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Hypergroups

A Second Classification

Corollary (S 2024)

Let D unitary fusion and L = I (1) its canonical Lagrangian algebra,
and E ⊆ D full fusion. Then, there is an equivalence of 2-groups:

I LE : Aut⊗(D|E)
∼−→ Autbr⊗ (Z(D)|L,K0(E)).

Remark

This is an extension of our ‘bulk-boundary correspondence of
symmetries’ to include matrix product operator symmetries.
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Hypergroups

Outline of Proof

[BJ22] give a canonical action of D on I (1) ∈ Z(D).

We show the following diagram of groups commutes and argue
about the images of subgroups:

Aut⊗(D) Autbr⊗ (Z(D)|L)

Aut FusD Aut End L

I L

Forg ad

can

,

Since the desired 2-subgroups were full, we immediately obtain
the categorified result.
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Examples

Subcategories of Vec (G )

Full fusion subcategories of Vec (G ) correspond to subgroups H ⊆ G .
Isomorphism classes of monoidal autoequivalences are given [NR14]:

Aut⊗(VecG ) ∼= Aut(G )⋉ H2(G ),

[α, ηα] 7→ (Forg(α), [ηα])

Notice there is a canonical action of Aut(G ) on G . We claim that:

Aut⊗(VecG |VecH) ∼= Stab(H)⋉ H2(G ).
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Examples

The Subcategories of Vec (S3)

Consider the symmetric group on 3 elements S3 which has
H2(S3) = 0 and Aut(S3) = S3. Subgroups of S3 are:

0 with Stab(0) = S3.

(12), (13), (23) with:

Stab((12)) = {123, 132} ∼= Z2,

Stab((23)) = {123, 321} ∼= Z2,

Stab((13)) = {123, 213} ∼= Z2.

(123), with Stab((123)) = {123, 231, 312}.
S3 with Stab(S3) = {123}.
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Examples

The Subcategories of Vec (Z2 × Z2)

Consider the Klein 4-group Z2 × Z2, which has H2(Z2 × Z2) ∼= Z2

and Aut(Z2 × Z2) = S3. Nontrivial subgroups of S3 are:

0 with Stab(0) = S3 ⋉ Z2
∼= S3 × Z2,

⟨(1, 0)⟩ , ⟨(0, 1)⟩ , ⟨(1, 1)⟩ are all normal with:

Stab((1, 0)) = {123, 132}⋉ Z2
∼= Z2 × Z2,

Stab((0, 1)) = {123, 321}⋉ Z2
∼= Z2 × Z2,

Stab((1, 1)) = {123, 213}⋉ Z2
∼= Z2 × Z2.

Z2 × Z2 with Stab(Z2 × Z2) = Z2.
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